

www.infim.ro

www.ifin.ro

The National Institute of Materials Physics (INCDFM)

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH)

Realisation of a photoactive structure on n-GaSb (100)

Patent Number: RO133228/2017

Abstract

The invention is about defining a new structure for a photosensitive device on n-GaSb in near IR region.

Gallium antimonide (GaSb) is an III-V semiconductor compound with zinc blend crystal structure and direct band gap energy of 0.726 eV. It is a substrate material in device technology and it allows operation on a wide spectral range (0.8 \div 4.3 μ m). Consequently, GaSb is an important competitor for solar energy conversion e.g. high efficiency thermophotovoltaic (TPV) cells.

The n-GaSb substrates were chemically prepared by cleaning and selective etching, and afterwards were irradiated with 1 MeV Si¹⁺ for defining an active p-n junction at a precise level of local doping. The technological procedure included a recovery treatment and for defining the device structure, the metals were vacuum deposited in order to obtain ohmic contacts on p-n junction, as PdGeAu/n-GaSb and Ag/p-GaSb.

We obtained a photosensitive structure with a maximum photo-current response at 1.5 μ m. The photo-sensitive structure response in IR region indicates as regarding responsivity characteristics the presence of a competitive device on the market.

Advantages

- the use of ion implantation as a doping technique, offering precise and accurate controle of dose and depth profile;
- the use of Si⁺ ions for p-type doping in GaSb (group IV atoms such as Si are well known as amphoteric dopants of III-V compounds);
- the ohmic contact PdGeAu/n-GaSb is a premiere that ensures a linear current versus voltage (I-V) characteristics, with a curve slope R ~ 10 ÷ 14 Ω; in addition, this contact is made by successive deposition in medium vacuum conditions;
- the realisation of Ag/p-GaSb contact ensures a linear current versus voltage (I-V) characteristics, with a curve slope $R \sim 10~\Omega$;
- The use of a commercial support for device encapsulation (adapted TO-3 package).

Applications

 Biological and medical aplications, optoelectronic and metal-insulatorsemiconductor (MIS) devices.

Contact

Daniela Zamfir **Tel:** +40741289153

Email: daniela.zamfir@nipne.ro